Round 86

Round UUID: 2e1add67-c038-4e8d-9f42-39497d4d29ea

Prompt:

Predict treatment outcome using these comprehensive and nuanced decision rules:

1. Histogen_Complex Specific Scoring System:

Delta Complex:
- Failure Risk Assessment:
  a) If TcQ_mass < 5000: +3 Failure Points
  b) If Treatment_Months > 120 AND TcQ_mass < 8000: +2 Failure Points
  c) If Genetic_Class_B_Matches > 2 AND Treatment_Months > 90: +2 Failure Points
  d) If Treatment_Months < 60 AND TcQ_mass < 7000: +1 Failure Point

- Success Mitigation Factors:
  a) If TcQ_mass > 25000: -2 Failure Points
  b) If Genetic_Class_A_Matches > 2: -1 Failure Point
  c) If Cohort is Delhi: -1 Failure Point

Beta Complex:
- Success Indicators:
  a) If TcQ_mass > 60000: +3 Success Points
  b) If Treatment_Months between 100-140: +2 Success Points
  c) If Genetic_Class_A_Matches > 2: +2 Success Points

- Failure Risk Factors:
  a) If Treatment_Months > 180: +3 Failure Points
  b) If TcQ_mass < 10000: +2 Failure Points
  c) If Genetic_Class_B_Matches > 3: +1 Failure Point

Omicron Complex:
- Outcome Determination:
  a) If TcQ_mass = 0: +4 Failure Points
  b) If Treatment_Months > 150 AND TcQ_mass < 20000: +3 Failure Points
  c) If TcQ_mass > 40000: +2 Success Points
  d) If Genetic_Class_A_Matches > 2: +1 Success Point

2. Advanced Modifiers:
- Sex Impact:
  * Female with low TcQ_mass: +1 Failure Point
  * Male with high genetic match diversity: -1 Failure Point

- Cohort Adjustment:
  * Melbourne: Neutral
  * Delhi: Slight success bias (-0.5 Failure Points)
  * Lisbon: Slight failure bias (+0.5 Failure Points)

3. Final Outcome Calculation:
- Total Point Ranges:
  * Points > 3: Strong FAILURE Prediction
  * Points < -2: Strong SUCCESS Prediction
  * Points between -2 and 3: Requires Careful Investigation

4. Confidence Calibration:
- High uncertainty zones:
  * Extreme TcQ_mass values
  * Borderline genetic match counts
  * Treatment durations near threshold transitions

Evaluation Process:
1. Identify Histogen_Complex
2. Calculate comprehensive point-based risk assessment
3. Apply advanced sex and cohort modifiers
4. Make probabilistic prediction with explicit confidence levels